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Abstract

Bayesian Networks are being used extensively
for reasoning under uncertainty. Inference
mechanisms for Bayesian Networks are com-
promised by the fact that they can only deal
with propositional domains. In this work, we
introduce an extension of that formalism, Hi-
erarchical Bayesian Networks, that can repre-
sent additional information about the struc-
ture of the domains of variables. Hierarchical
Bayesian Networks are similar to Bayesian
Networks, in that they represent probabilis-
tic dependencies between variables as a di-
rected acyclic graph, where each node of the
graph corresponds to a random variable and
is quanti�ed by the conditional probability
of that variable given the values of its par-
ents in the graph. What extends the ex-
pressive power of Hierarchical Bayesian Net-
works is that a node may correspond to an
aggregation of simpler types. A component
of one node may itself represent a compos-
ite structure; this allows the representation
of complex hierarchical domains. Further-
more, probabilistic dependencies can be ex-
pressed at any level, between nodes that are
contained in the same structure.

1. Introduction

Bayesian Networks [Pear88] are a useful tool for prob-
abilistic inference, but are unable to deal with non-
propositional domains. Aggregate data types can be
represented either using a 
attened representation,
which results in loss of expressivity, or by represent-
ing the aggregate type as a single node, disregarding
possible probabilistic dependencies between the com-
ponents of the structure.

In this paper we introduce an extension of Bayesian
Networks, namely Hierarchical Bayesian Networks,

which are a representation formalism for probabilistic
independencies between variables that belong to struc-
tured domains. Probabilistic inference mechanisms of
standard Bayesian Networks can generally be extended
for Hierarchical Bayesian Networks as well. We begin
with a very brief presentation of Bayesian Networks in
the next section. In section 3 we provide an insight to
Hierarchical Bayesian Networks, followed by basic def-
initions of the model and operations we apply. Section
4 contains an overview of inference in Bayesian Net-
works and some preliminary ideas about how existing
methods may be adapted for the hierarchical case. We
conclude by giving an outline of our current track of
work.

2. Bayesian networks

2.1. Basic theory

A Bayesian network is a directed acyclic graph
where nodes correspond to random variables and arcs
between nodes represent probabilistic dependencies.
From a simplifying perspective, an arc pointing from
node A to node B can be perceived as A causing or
in
uencing B.

Each node in the network is annotated with a con-
ditional probability table, that represents the condi-
tional probability of the variable given the values of
its parents in the graph. For nodes that have no par-
ents, the corresponding table will simply contain the
prior probabilities for that variable.

A Bayesian Network is a compact representation of
the full joint probability of the random variables in
the graph. The joint probability of n variables can be
expressed using a table whose size is of order O(2n). In
a Bayesian Network, the joint probability is expressed
in factorised form, and conditional independencies are
exploited in order to simplify the posterior probability
expressions. Hence, it is enough to store n separate
tables of size O(2k), where k is the maximum number
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Figure 1. The PlayTennis decision example.

of incoming arrows in a node.

The main property of Bayesian Networks can be
loosely expressed in the following way: A node is con-
ditionally independent of its non-descendents, given
the values of its immediate parents. A strict de�ni-
tion of the independencies that a Bayesian Network
encodes uses the following criterion of d-separation
[Pear88]:

De�nition 2.1 (d-separation) Let X;Y; Z be three
disjoint set of vertices in a directed acyclic graph. Z

is said to d-separate X from Y if for every undirected
path between any x 2 X and y 2 Y there exists a node
w on that path, such that either of the following holds:

� w does not have converging arrows (i.e., along the
path connecting x and y) and w is in Z

� w has converging arrows and neither w or any of
its descendants in the graph is in Z

For X;Y; Z being three sets of nodes in a Bayesian
Network, if Z d-separatesX from Y then P (X jY; Z) =
P (X jZ), i.e. X is independent of Y given Z.

2.2. Example: PlayTennis

Let us consider the following example: We wish to de-
scribe whether or not a particular day is appropriate
for a speci�c individual to enjoy her favourite sport,
depending on weather conditions. Assume that we ob-
serve that the value of the boolean variable PlayTen-
nis is correlated to sky outlook, wind and temperature
(which all have discrete domains), and also we observe
a strong correlation between sky outlook and temper-
ature, as well as between wind and temperature. This
dependency model can be decomposed as the Bayesian
Network shown in Figure 1.
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P(A)       a1       a2

    a1              0.4    0.6
    a2              0.8    0.2

P(BI|A)        bI1     bI2

P(BII|A,BI)             bII1    bII2     bII3

    a1bI1                     0.3     0.4      0.3
    a1bI2                     0.1     0.5      0.4
    a2bI1                     0.7     0.1      0.2
    a2bI2                     0.9     0.1      0

P(C|BI,BII)           c1       c2      c3

   bI1bII1               0.2     0.6     0.2
   bI1bII2               0.3     0.4     0.3
   bI1bII3               0.2     0.2     0.6
   bI2bII1               0.5     0.3     0.2
   bI2bII2               0.6     0.2     0.2
   bI2bII3               0.7     0.2     0.1

Figure 2. A simple Hierarchical Bayesian Network. (a)
Nested representation of the network structure. (b) Tree
representation of the network structure. (c) Standard
Bayesian Network expressing the same dependencies. (d)
Probabilistic part.

3. Hierarchical Bayesian Networks

3.1. Intuition

Hierarchical Bayesian Networks are a generalisation of
standard Bayesian Networks, where a node in the net-
work may be an aggregate data type. This allows the
random variables of the network to represent arbitrar-
ily structured types. Within a single node, there may
also be links between components, representing prob-
abilistic dependencies among parts of the structure.

Hierarchical Bayesian Networks encode conditional
probability dependencies the same way as standard
Bayesian Networks. Hierarchical Bayesian Networks
can express further knowledge about variable struc-
ture and use that knowledge to build more realistic
probabilistic models.

A Hierarchical Bayesian Network consists of two parts.



The structural part contains the variables of the net-
work and describes the part-of relationships and the
probabilistic dependencies between them. The part-of
relationships in a structural part may be illustrated
either as nested nodes (Fig. 2(a)) or as a tree hier-
archy (Fig. 2(b)). The second part of a Hierarchical
Bayesian Network, the probabilistic part, contains the
conditional probability tables that quantify the links
introduced at the structural part.

3.2. Example: PlayGolf

We will demonstrate how a Hierarchical Bayesian Net-
work can express dependencies in structured domains.
Consider a random variable PlayGolf that expresses
the probability that a particular day is appropriate for
a given individual to exercise her hobby. That decision
is independently in
uenced by the weather and by the
individual's mood according to business a�airs. Fur-
thermore, assume that Weather is a triple of random
variables (Outlook, Temperature, Wind) and Business
is a pair of random variables (Market, Meeting) where
Market consists itself of the pair (Currency, Shares).

A hypothetical con�guration of the probabilistic de-
pendencies between those variables is illustrated as a
Hierarchical Bayesian Network (structural part only
shown) in Figure 3(a).

We can observe that the Hierarchical Bayesian Net-
work structure is much more informative than a stan-
dard Bayesian Network mapping the same indepen-
dencies, shown in Figure 3(b). Additionally, the as-
sumption that components of Weather and Business
are independent to each other is shown explicitely
the structure. The structure can easily be extended
(adding more components inside Business composite
node) or re�ned (transforming a leaf node into a com-
posite one) without having to examine dependencies
with the separate Weather components (as would be
the case in a standard Bayesian Network without any
domain information).

The network structure can easily be manipulated to
express further assumptions that we might want to
assert when performing inference. E.g., consider the
Naive Bayes assumption, according to which the val-
ues of di�erent attributes are independent given the
value of the class attribute. This assumption can be
viewed as a 2-step transformation of the original net-
work. First, we need PlayGolf to be a parent node of
the other attributes (so that it will appear in the con-
ditional part of the probabilistic expressions). In the
resulting network Weather and Business nodes will be
linked, since they are not independent given the value
of PlayGolf (if the individual would not play golf and
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Figure 3. The Playgolf example structure. (a) Hierarchi-
cal Bayesian Network structure. (b) Standard Bayesian
Network mapping the same independencies

the weather is �ne, there must be something going bad
about business). The \naive" assumption then lies in
removing that link. That higher-level link is in essence
the set of all links from each component of the one
composite node to each component of the other one.
Grouping these as a single link in the level of compos-
ite nodes makes the application of similar assumptions
much more straightforward.

3.3. De�nitions

We will now provide more formal de�nitions of the no-
tion of Hierarchical Bayesian Networks. We begin by
introducing hierarchical type aggregations, over which
Hierarchical Bayesian Networks are de�ned. Cur-
rently, the only aggregation operator that we allow for
composite types is the Cartesian product, but we plan
to extend composite types to include aggregations such



as lists and sets. This will demand a proper de�nition
of probability distribution over these constructs.

De�nition 3.1 (Composite type) Let
f�1; �2; :::; �ng be a set of atomic types (domains).

The Cartesian product

� = �1 � �2 � :::� �n

is a composite type. The types �1; �2; :::; �n are called
the component types of � .

De�nition 3.2 (Type structure) The type struc-
ture corresponding to a type � is a tree t such that:

� If � is an atomic type, t is a single leaf labelled � .

� If � is composite, t has root � and children the
type structures that correspond to the components
of � .

De�nition 3.3 (HBN-tree structure) Let � be an
atomic or composite type, and t its corresponding type
structure. An HBN-tree structure T over the type
structure t, is a triplet < R;V ; E > where

� R is the root of the structure, and corresponds to
a random variable of type � .

� V is a set of HBN-tree structures called the t-
children of R. If � is a simple type then this set is
empty, otherwise it is the set of HBN-tree struc-
tures over the component-types of � . R is also
called the t-parent of the elements of V.

� E � V2 is a set of directed edges between elements
of V such that the resulting graph contains no di-
rected cycles. For (v; v0) 2 E we say that v and
v0 participate in a p-relationship, or more speci�-
cally that v is a p-parent of v0 and v0 is a p-child
of v.

If � is an atomic type, an HBN-tree structure over t
will be called an HBN-variable. We will use the term
HBN-variable to refer also to the random variable of
type � that the root of the structure is associated to.
Referring to the Hierarchical Bayesian Network of Fig-
ure 2, there are four HBN-variables: A;BI;BII and
C. The t-parent of BII is B, and its only p-parent is
BI .

Given an HBN-tree structure T =< R;V ; E > and a
t-child of R, < R0;V 0; E 0 >2 V , then for any vP ; vC ; vi
such that (vP ; v) 2 E ; (v; vC) 2 E ; vi 2 V 0, we say
that vP is an higher-level parent of vi, and that vi is
an higher-level parent of vC . Furthermore, if vHLP is a
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Figure 4. (a) A part of an HBN-tree structure. (b) Result
of pruning the structure on node C. (c) Result of 
attening
the structure on C.

higher-level parent of v, then vHLP is also a higher-level
parent of vi, and if v is a higher-level parent of vHLC
then vi is also a higher-level parent of vHLC . Back to
the example in Figure 2, the higher-level parents of
BII are A and BI , and its only higher-level child is
C.

De�nition 3.4 The HBN-Probabilistic Part related
to an HBN-structure T consists of:

� A probability table for each HBN-variable in T

that does not have any p-parents or higher-level
parents.

� A conditional probability table for each other
HBN-variable, given the values of all HBN-
variables that are its p-parents or higher-level par-
ents.

De�nition 3.5 A Hierarchical Bayesian Network is a
triplet < T;P ; t > where

� t is a type structure

� T =< R;V ; E > is an HBN-tree structure over t

� P is the HBN-Probabilistic Part related to T

The key property underlying a Hierarchical Bayesian
Network is that the value of a variable is conditionally
independent of the nodes that are not its descendants,
given the values of its direct or higher-level parents.

3.4. Pruning and Flattening

We now de�ne the operations of pruning and 
atten-
ing a Hierarchical Bayesian Network on a given node



v (Fig. 4). Informally, pruning a structure on a com-
posite node disregards the additional structure un-
derneath, replacing the whole sub-tree with a single
node, that will be an aggregation of all the atomic
types contained in it. Flattening also disregards the
structure, but retains the individual nodes (and the p-
relationships between them). Using pruning and 
at-
tening we can employ various useful transformations
on a Hierarchical Bayesian Network, such as deriving a
standard Bayesian Network that maps the same prob-
abilistic independencies between the atomic types.

De�nition 3.6 (Pruning) Let t be a type structure
with root � and T =< R;V ; E > an HBN-tree structure
over t.

Pt is a closed operator on type structures, de�ned as
follows:

� If � is an atomic type, Pt(t) = t.

� Otherwise, Pt(t) = t0, where t0 is a leaf type struc-
ture, corresponding to � .

That is, pruning a composite type simply yields the
equivalent atomic type, ignoring the internal structure.

Assuming V is not empty, let v 2 V be a t-child of R,
i.e. an HBN-tree structure over t0, where t0 is a child
of t.

Ph is a closed operator on HBN-tree structures, de�ned
as follows: Ph(v) is an HBN-tree structure over Pt(t

0),
i.e. an HBN-variable.

The operation of pruning an HBN-tree structure T un-
der a node v, which we notate PHBN (T; v), results in
an HBN-tree structure T 0 =< R;V 0; E 0 >, where Ph(v)
replaces v in V ; E to give V 0; E 0 respectively.

De�nition 3.7 (Type structure 
attening) Let t
be a type structure with root � and ti; i = 1; 2; :::n the
children of � .

The operation of 
attening the type structure t under
ti, denoted Ft(t; ti), is de�ned as follows:

� If ti is a leaf, Ft(t; ti) = t.

� Otherwise, if ti has children t0j ; j = 1; 2; :::;m,
and t00 = Ft(:::(Ft(Ft(ti; t

0

1
); t0

2
); :::); t0m) (i.e., t00

is t0 
attened under all its children), and t00k ; k =
1; 2; :::; r are the children of t00, then Ft(t; ti) is a
type structure with root t and children

ft1; t2; :::; tng n ftig [ ft00
1
; t00

2
; :::; t00rg

(i.e., ti is replaced by the children of t00).

De�nition 3.8 (HBN-tree structure 
attening)
Let T =< R;V ; E > be an HBN-tree structure over
a type structure t, T 0 =< R0;V 0; E 0 > an HBN-tree
structure over a type structure t0 with T 0 2 V, and
�; � 0 the roots of t; t0 respectively.

The operation of 
attening the HBN-tree structure T
under T 0, denoted Fh(T; T

0), is an HBN-tree structure
over the type structure Ft(t; t

0) de�ned as follows:

� If T 0 is an HBN-variable, Fh(T; T
0) = T .

� Otherwise, if V 0 = fv0

1
; v0

2
; :::; vn0g, T 00 =

Fh(:::(Fh(Fh(T
0; v0

1
); v0

2
); :::); v0

n) is the result of

attening T under all its t-children and V 00 =
fv00

1
; v00

2
; :::; v00

mg are the t-children of T 00, then
Fh(T; T

0) =< R;V1; E1 > such that

{ V1 = V n fT 0g [ V 00, i.e. T 0 is replaced by the
children of T 00 in the HBN-tree structure

{ E1 is similar to E, except for each (T 0; v) 2=
E being replaced by f(v00

i ; v)ji = 1; 2; :::;mg in
E1, and each (v; T 0) 2= E being replaced by
f(v; v00

i )ji = 1; 2; :::;mg in E1. I.e., all vi par-
ticipate in the former p-relationships of T 0.

De�nition 3.9 (Corresponding Bayesian Network)
Let H be a Hierarchical Bayesian Network structure
with HBN-probabilistic part P associated to it, and
H 0 =< R;V ; E > the Hierarchical Bayesian Network
that results after 
attening H successively under all
its t-children. The corresponding Bayesian Network
of H is a Bayesian Network whose graphical part is
the graph < V ; E > and probabilistic part is P .

4. Inference in Hierarchical Bayesian

Networks

Inference algorithms used for standard Bayesian Net-
works can also be applied to the Hierarchical Bayesian
Network model. Backward reasoning algorithms
[Russ85] and message passing algorithms [Pear88] can
be used if we restrict our focus on the corresponding
Bayesian Networks. The additional information in the
Hierarchical Bayesian Network may serve towards a
better interpretation of the resulting probability dis-
tributions.

Standard inference algorithms are not directly applica-
ble to networks that contain loops (a loop is a closed
path in the underlying undirected graph structure).
One technique of coping with loops is to merge groups
of variables into compound nodes, eliminating the cir-
cles in the graph. In the case of Hierarchical Bayesian
Networks, knowledge of the hierarchical structure can
serve as a guideline for which nodes to merge, in such
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Figure 5. Belief propagation in polytrees. (a) Message
passing in polytree structures. (b) Local belief update.

a way that the resulting network would allow a more
meaningful interpretation.

4.1. Message Propagation Algorithm

A very e�cient method of calculating beliefs in
polytree-structured standard Bayesian Networks (i.e.,
that do not contain any undirected closed path) is the
message-passing algorithm described in [Pear88]. Ev-
ery node in the network is associated to a belief state,
that is a vector whose elements sum up to one and cor-
respond to the proportionate beliefs that each value
in the domain may be the variable's value, given all
available knowledge. The belief state of every node
can be directly retrieved given the belief states of its
parents and children. Whenever a change in a node's
belief state occurs, either forced by some direct obser-
vation or indirectly, due to a change of the state of a
neighbour, the node calculates its new belief state and
propagates the relevant information to its parents and
children (Fig. 5). The algorithm then repeats until
the network reaches an equilibrium.

Belief calculation is performed locally in three inde-
pendent steps:

Belief updating: Calculating a node's belief vector,
using the latest information available from its
neighbours.

Bottom-up propagation: Computing the � mes-
sages that will be sent to parent nodes.

Top-down propagation: Computing the � mes-
sages that will be sent to children nodes.

The locality of the above algorithm is based on prob-
abilistic independencies that result from the assump-
tion that the network does not contain any undirected

circles. If a network does contain loops, either an equi-
librium cannot be reached, or, if it can be, it will not
necessarily represent the actual joint probability dis-
tribution.

This algorithm may be directly applied to Hierarchical
Bayesian Networks in the trivial case where the cor-
responding Bayesian Network does not contain undi-
rected cycles. Even if individual composite nodes con-
tain no loops, these will occur in the corresponding
Bayesian Network in any case where some compos-
ite node participates in more than one p-relationship.
The only case where loops will not occur is if we al-
low for polytree-like structures, where only leaf nodes
may be composite, under the further restriction of not
containing any p-links.

4.2. Structures containing loops

In the case where probabilistic dependencies form
loops in the network infrastructure (i.e., the undirected
network) the above algorithm cannot be applied di-
rectly. We de�ne a Hierarchical Bayesian Network to
contain loops if its corresponding Bayesian Network
contains loops. There are several approaches that can
be used to perform inference on a network contain-
ing loops [Pear88, Henr86]. As a trivial case, these
methods can be applied to any Hierarchical Bayesian
Network after 
attening it to a standard Bayesian Net-
work. Here we will restrict our discussion on an exist-
ing clustering method and show how it can be specif-
ically adapted to the Hierarchical Bayesian Network
case.

Clustering methods eliminate loops by grouping to-
gether clusters of two or more vertices into composite
nodes. Di�erent cluster selections may yield di�erent
polytrees when applied to a given Bayesian Network.
As an extreme case, all non-leaf nodes may be grouped
in a single cluster (Fig. 6(b)).

One popular method, described in [Pear88], is based
on the construction of join trees. Brie
y, the tech-
nique consists in building a triangulated undirected
graph G (i.e., a Markov Network) that represents in-
dependency relations similar to the original Bayesian
Network, and then linking the maximal cliques of G to
form a tree structure. The advantage of this method is
that the resulting directed acyclic structure is a tree,
making the application of message propagation highly
e�cient. The trade-o� is that the common parents of
a node in the original Bayesian Network, along with
the node itself, will be grouped into a single cluster, so
information about independencies between them will
be lost (Fig. 6(c,d)).
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Figure 6. Coping with loops. (a) A Bayesian Network con-
taining the loop ABDA. (b) Grouping all non-leaf variables
in a single cluster. (c) Equivalent Markov network. (d)
Join tree algorithm results in a single cluster.

The same algorithm can be applied directly on any
fully 
attened Hierarchical Bayesian Network. How-
ever, we can make use of the additional information
that a Hierarchical Bayesian Network structure con-
tains to arrive to more informative structures. The
method we introduce is the following algorithm:

Algorithm 1 (HBN-decycling algorithm) To
decycle a node v:

� If v is a non-leaf node:

{ Decycle all components of v

{ If v participates in two or more p-edges,
prune the network structure on v.

{ If v has exactly one p-parent (or p-child),

atten the structure on v replacing every p-
connected subset of the t-children of v by a
single cluster.

{ If v has no p-parents or p-children, 
atten
the structure on the node v.

� If v is a leaf node, leave v unchanged

By applying the HBN-decycling algorithm on a Hier-
archical Bayesian Network and then retrieving its cor-
responding Bayesian Network, we arrive at a polytree
Bayesian Network. The application of the inference
algorithm for Bayesian Networks is not as e�cient for
polytrees as it is for standard trees, but this is bal-
anced by the smaller size of individual nodes.

AB
C

D

t

AB C D

A B

(a) (b)

Figure 7. (a) A Hierarchical Bayesian Network containing
the loop ABDA. (b) Result of the HBN-decycling algo-
rithm.

In �gure 7(a) we see an HBN-tree structure containing
a loop. The structure is similar to the Bayesian Net-
work in �gure 6(a), with nodes A and B additionally
forming a composite node. The result of the decycling
algorithm (Fig. 7(b)) retains much more structural
information from the original structure.

4.3. Stochastic simulation methods

Complexity of exact inference algorithms for Bayesian
Networks is known to be exponential to the number of
nodes. Approximate methods can be useful in many
cases, especially when large networks are concerned.
In stochastic simulation [Russ85, Henr86] a network
is used to stochastically generate a large set of value
assignments to variables, and the probability of any
particular event is approximated by calculating the rel-
ative frequency that it occurs with.

In Hierarchical Bayesian Networks, we can apply a
similar procedure using the partial ordering of nodes
that the network represents. In order to generate a
value assignment, we begin by stochastically choos-
ing a value for each variable node with no p-parents,
according to the given prior probabilities. Then, we
proceed by choosing values for variable nodes whose p-
parents have already been considered, with respect to
the relevant conditional probabilities. When all vari-
able nodes have values assigned to them, we store that
sample and iterate.

5. Conclusions and further work

We have introduced an extension of Bayesian Networks
that deals with structured data. Our approach takes
advantage of existing Bayesian Network methods, and
is an elegant way of incorporating into them speci�c
domain knowledge.

Our current work is focused on implementing inference



methods for Hierarchical Bayesian Networks, aiming
to be tested against the performance of standard
Bayesian Networks. Further on, we plan to introduce
more aggregation operators for types, such as lists and
sets. This will demand somewhat more sophisticated
probability decomposition methods than the Carte-
sian product [Flac00], and will allow the application of
the model to structures of arbitrary form and length,
such as web pages or DNA-sequences. Presently, we
are also investigating learning methods for networks
given an observed set of data. Assuming that a type
structure is known, the goal is to �nd the con�gura-
tion for probabilistic dependency links and conditional
probability values that �t best the given data. This
problem may be addressed with Bayesian techniques
(see [Coop92, Heck95]) where the likelihood of a model
given the observed evidence is computed through the
probability of the evidence having occurred given the
model.
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