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Abstract: This paper extends the power hierarchy of dependability models de-
veloped by Malhotra and Trivedi (1994) and Muppala et al. (2000) to include
Piecewise Deterministic Markov Processes (PDP) and PDP-related Petri Nets.
PDPs are known as the largest class of continuous-time hybrid state Markov
processes not involving diffusions. Since Petri Nets have proven to be extremely
useful in developing Markov process models of complex practical processes, there
is a clear need for a type of Petri Net that can play such role for developing PDP
models. This paper defines such Petri Nets and shows their relation to PDPs and
other Petri Nets. Copyright c©, 2003, IFAC
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1. INTRODUCTION

Malhotra and Trivedi (1994) and Muppala et al.
(2000) developed a hierarchy of various depend-
ability models based on their modelling power.
The aim of this paper 1 is to extend this power
hierarchy such that it includes Piecewise Deter-
ministic Markov Processes (PDP) and a PDP-
related Petri Net.

Davis (1984, 1993) has introduced PDPs as the
most general class of continuous-time Markov pro-
cesses which include both discrete and continu-
ous processes, except diffusion. In his 1984 paper,
Davis shows that PDP have more modelling power
than Semi Markov Processes.

(Everdij et al., 1997; Everdij and Blom, 2000) have
introduced a novel type of Petri Net, named Dy-

1 This research has been performed with support of the
European Commission through the HYBRIDGE project

namically Coloured Petri Net (DCPN), which has
the same modelling power as PDP. This paper will
show this by identifying into-mappings between
DCPN and PDP, and will also show that DCPN
have more modelling power than Deterministic
and Stochastic Petri Nets (DSPN). The combi-
nation of these results with those by Muppala et
al. (2000) leads to Figure 1, in which well known
dependability models Reliability Block Diagrams
and Fault Trees are at the basis of the hierarchy.

The motivation for this research stems from the
following unsolved issue in air traffic: under which
conditions is it possible to reduce established
criteria for separation between aircraft without
sacrificing safety in the form of collision risk.
Studying this issue is most urgent for those regions
in the world where air traffic is most dense,
and consequently where the interplay between
aircraft and air traffic management centres is most
complex.
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Fig. 1. Power hierarchy among various model
types. An arrow from a model to another
model indicates that the second model has
more modelling power than the first model.
Arrows labelled by [M] have been established
by (Malhotra and Trivedi, 1994) and (Mup-
pala et al., 2000). The arrow labelled by [D] is
established by Davis (1984). Arrows labelled
by [P] are established in the current paper.

During an earlier study (Bakker and Blom, 1993)
a clear relation has been established between col-
lision risk and the evolution of the density of the
joint states of two or more flying aircraft. During
the subsequent search for Markov process models
to characterise the evolution of such densities the
class of PDPs was identified as a very useful one
(Everdij et al., 1996). At this moment, this type of
modelling and evaluation has been accomplished
for several air traffic management situations (e.g.
Blom et al., 2001). It appeared to be less straight-
forward to develop an appropriate PDP model for
a process as complex as air traffic management.
For this reason a Petri Net has been developed
(Everdij et al., 1997; Everdij and Blom, 2000)
that supports the modelling of PDPs for complex
practical problems, similarly as Stochastic Petri
Nets support the development of a Markov Chain
for discrete valued complex problems. This new
Petri Net and its precise relation with PDPs and
other models form the subject of this paper.

A PDP (Davis, 1984, 1993) consists of two compo-
nents: a discrete valued component and a contin-
uous valued component. The discrete valued com-
ponent models the mode process {θt}. At discrete
times, {θt} may switch to another mode value

which is selected according to some probabilistic
relation. The continuous valued component mod-
els the drift process {xt}, as a solution of a θt-
dependent differential equation. At discrete mo-
ments in time, {xt} may jump according to some
relation, which makes it only piecewise continu-
ous. The PDP state is given by ξt = Col{θt, xt},
and is called a hybrid state. A switch and/or
a jump occurs either when a doubly stochastic
Poisson process generates a point or when {xt}
hits the boundary of a predefined area. If {xt}
also makes a jump at a time when {θt} switches,
this is said to be a hybrid jump. PDPs are defined
such that their sample paths are right-continuous
and have left-hand-side limits (càdlàg, from the
French ‘continu à droite, limites à gauche’, see e.g.
Protter (1990)).

There are two potential formalisms available that
might support the development of a PDP model
for a complex multi-agent application: Hybrid Au-
tomata and Petri Nets. The first have shown to be
useful for application in problems of decidability,
formal verification and control synthesis (Alur et
al., 1993; Lygeros et al., 1998; Van Schuppen,
1998; Sipser, 1997; Tomlin et al., 1998; Weinberg
et al., 1996). Branicky (1995) identified a close
relation between PDPs and Hybrid Automata.
An important limitation, however, is that Poisson
type of events are not covered by Hybrid Au-
tomata, which makes them rather restrictive in
modelling stochastic effects that occur in practice
and are covered by PDPs.

Petri Nets (see David and Alla (1994) for an
overview) could provide another important mod-
elling formalism for PDP processes. Several hybrid
state Petri Net extensions have been developed in
the past. Main classes are:

• Hybrid Petri Net (Le Bail et al., 1991). Some
places have a continuous amount of tokens
that may be moved to other places by tran-
sitions.

• Fluid Stochastic Petri Net (FSPN) (Trivedi
and Kulkarni, 1993). Some places have a
continuous amount of tokens, the flow rate of
which is influenced by the discrete part. The
discrete part of the FSPN can be mapped to
a continuous-time Markov chain.

• Extended Coloured Petri Net (ECPN) (Yang
et al., 1995). The token colours are real-
valued vectors that may follow the solution
path of a difference equation.

• High-Level Hybrid Petri Net (HLHPN) (Giua
and Usai, 1996). Again, the token colours
are real-valued vectors that may follow the
solution path of a difference equation, but
in addition, a token switch between discrete
places may generate a jump in the value of
the real-valued vector.



• Differential Petri Nets (Demongodin and
Koussoulas, 1998). Differential places have a
real-valued number of tokens and differential
transitions fire with a certain speed that may
also be negative.

For none of the above hybrid state Petri Nets
it is clear how they relate to PDP. In order
to characterise the exact relation to a PDP, a
kind of hybrid state Petri Net is needed that
makes direct use of the specific PDP structure.
The newly developed Dynamically Coloured Petri
Net (DCPN) presented in this paper does this.
This makes that into-mappings between PDPs
and DCPNs exist. An issue that deserves special
attention when relating PDPs to Petri Nets is that
for a PDP, at each moment in time, there is a
unique realisation of the state, while a Petri Net
may make a sequence of jumps at a single moment
in time. The into-mappings between PDPs and
DCPNs referred to in this paper take care of this
issue.

The organisation of this paper is as follows. Sec-
tions 2 through 4 define Dynamically Coloured
Petri Nets and show that DCPN have the same
modelling power as PDP. Section 5 gives an ex-
ample DCPN. Section 7 shows how DCPN have
more modelling power than DSPN. Section 8 gives
conclusions.

2. DCPN ELEMENTS

A Dynamically Coloured Petri Net (Everdij and
Blom, 2000) is given by DCPN = (P , T , A, N ,
S, C, I, V , G, D, F), where:

P is a set of places.
T is a set of transitions which consists of a

set TG of guard transitions, a set TD of
delay transitions, and a set TI of immediate
transitions.

A is a finite set of arcs, which consists of a set
AO of ordinary arcs, a set AE of enabling
arcs, and a set AI of inhibitor arcs.

N is a node function which maps each arc to an
ordered pair of one transition and one place.

S is a set of colour types for the tokens occur-
ring in the net (a colour is the value of an
object or process in Petri Net terminology).

C is a colour function which maps each place to
a colour type in S.

I is an initial marking which defines the set
of tokens initially present, i.e., it specifies in
which places they initially reside, and the
colours they initially have.

V is a set of place specific colour functions
which describe what happens to (i.e. defines
the rate of change of) the colour of a token
while it resides in a specific place. It is deter-

mined by a token colour differential equation,
which is locally Lipschitz continuous.

G is a set of boolean-valued transition guards
associating each transition in TG with a
guard function which is evaluated when the
transition has a token in each of its input
places. The guard function must evaluate to
True before the transition is allowed to fire
(i.e. remove and produce tokens). Its eval-
uation depends on the colours of the input
tokens of the transition.

D is a set of transition delays associating each
transition in TD with a delay function which
is evaluated when the transition has a token
in each of its input places. The delay function
determines for how long the transition must
wait before it is allowed to fire (i.e. remove
and produce tokens). The firing rate depends
on the colours of the input tokens of the
transition.

F is a set of (probabilistic) firing functions
describing the quantity and colours of the
tokens produced by the transitions at their
firing. Its evaluation depends on the colours
of the input tokens of the transition.

The set of places P , the set of transitions T , the
set of arcs A and the node function N define a
Petri Net graph. Below, the graphical representa-
tion of the elements in P , T and A are given. The
node function N describes how these components
are connected.

Place: n
Guard transition:

Delay transition:

Immediate transition:

Ordinary arc: -

Enabling arc: s
Inhibitor arc: c

3. DCPN EVOLUTION

Tokens and the associated colour values in a
DCPN evolve through time quite similar as in a
Coloured Stochastic Petri Nets (e.g. Haas, 2002).
The main additions are that the colour of a token
may evolve according to a differential equation
that is governed by the colour function of the
specific place where the token resides, and that
guard transitions take the evolving colour values
into account.

Tokens can be removed from places by transitions
that are connected to these places by incoming
ordinary arcs. A transition can only remove tokens
if two conditions are both satisfied. If this is
the case, the transition is said to be enabled.
The first condition is that the transition must
have at least one token per ordinary arc and
one token per enabling arc in each of its input
places and have no token in the input places to
which it is connected by an inhibitor arc. When



the first condition holds, the transition is said to
be pre-enabled. The second condition differs per
type of transition. For immediate transitions the
second condition is automatically satisfied if the
transition is pre-enabled. For guard transitions
the second condition is specified by the set of
transition guards G and for delay transitions it
is specified by the set of transition delays D.

When these two conditions are satisfied, the tran-
sition removes the tokens from the input places
by which it is connected through an ordinary arc.
It does not remove the tokens from places by
which it is connected through an enabling arc.
Subsequently, the transition produces a token for
some or all of its output places, specified by the
firing function F . The colour of a produced token
(which must be of the correct type, indicated by
what C defines for the output place), and the place
for which it is produced is also specified by the
firing function F . The evaluation of G, D and
F may be dependent on the colours of the input
tokens of the corresponding transition.

In order to avoid ambiguity, for a DCPN the
following rules apply when two transitions are
enabled simultaneously:

R0 The firing of an immediate transition has
priority over the firing of a guard or a delay
transition.

R1 If one transition becomes enabled by two or
more disjoint sets of input tokens at exactly the
same time, then it will fire these sets of tokens
independently, at the same time.

R2 If one transition becomes enabled by two or
more non-disjoint sets of input tokens at exactly
the same time, then the set that is fired is
selected randomly.

R3 If two or more transitions become enabled at
exactly the same moment by disjoint sets of
input tokens, then they will fire at the same
time.

R4 If two or more transitions become enabled at
exactly the same moment by non-disjoint sets
of input tokens, then the transition that will fire
is selected randomly, with the same probability
for each transition.

4. INTO-MAPPINGS BETWEEN DCPN AND
PDP

An important property of DCPN is that they have
the same modelling power as Piecewise Determin-
istic Markov processes (PDP’s). This is proven in
(Everdij and Blom, 2000) through making use of
a construction of into-mappings between DCPN
and PDP, see the two theorems below.

Theorem 1:

Each Piecewise Deterministic Markov Process

with a finite domain K can be represented by
a process generated by a Dynamically Coloured
Petri Net (P , T , A, N , S, C, I, V , G, D, F)
satisfying R0 through R4.

Proof: See (Everdij and Blom, 2000).

Theorem 2:

Each process generated by a Dynamically Coloured
Petri Net (P , T , A, N , S, C, I, V , G, D, F)
satisfying R0 through R4 can be represented by
a Piecewise Deterministic Markov Process if the
following conditions are satisfied:

D1 There are no explosions, i.e. the time at which
a token colour equals +∞ or −∞ approaches
infinity whenever the time until the first guard
transition enabling moment approaches infinity.

D2 After a transition firing (or after a sequence of
firings that occur at the same time instant) at
least one place must contain a different number
of tokens, or the colour of at least one token
must have jumped

D3 In a finite time interval, each transition is
expected to fire a finite number of times.

Proof: See (Everdij and Blom, 2000).

5. EXAMPLE DCPN

To illustrate the advantages of DCPN when mod-
elling a complex system, consider a very simplified
model of the evolution of an aircraft in one sector
of airspace.

Assume the deviation of this aircraft from its
intended path depends on the operationality of
two of its aircraft systems: the engine system, and
the navigation system. Each of these aircraft sys-
tems can be in one of two modes: Working (func-
tioning properly) or Not working (operating in
some failure mode). Both systems switch between
their modes independently and on exponentially
distributed times, with rates δ3 (engine repaired),
δ4 (engine fails), δ5 (navigation repaired) and δ6

(navigation fails), respectively. The operationality
of these systems has the following effect on the
aircraft path: if both systems are Working, the
rate of change of the position and velocity of the
aircraft is given by function V1 (i.e. if zt is a
vector containing this position and velocity then
żt = V1(zt)). If either one, or both, of the systems
is Not working, this rate of change is given by
V2. Initially, the aircraft has a particular position
x0 and velocity v0, while both its systems are
Working. The evaluation of this process may be
stopped when the aircraft position crosses the
boundary ∂G to a neighbouring airspace sector.

Figure 2 shows a DCPN instantiation for this
example, where,
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Fig. 2. Example DCPN graph

• P1 denotes aircraft evolution Nominal, i.e.
evolution is according to V1.

• P2 denotes aircraft evolution Non-nominal,
i.e. evolution is according to V2.

• P3 and P4 denote engine system Not working
and Working, respectively.

• P5 and P6 denote navigation system Not
working and Working, respectively.

• P7 denotes the aircraft having crossed to the
neighbouring airspace sector.

• T1a and T1b denote a transition of aircraft
evolution from Nominal to Non-nominal, due
to engine system or navigation system Not
working, respectively.

• T2 denotes a transition of aircraft evolution
from Non-nominal to Nominal, due to engine
system and navigation system both Working
again.

• T3 through T6 denote transitions between
Working and Not working of the engine and
navigation systems.

• T7 and T8 denote transitions of the aircraft
to the neighbouring airspace sector.

The graph in Figure 2 completely defines DCPN
elements P , T , A and N , where TG = {T7, T8},
TD = {T3, T4, T5, T6} and TI = {T1a, T1b, T2}. The
other DCPN elements are specified below:

S: One colour type is defined; S = {IR6}.
C: C(P1) = C(P2) = C(P7) = IR6. The colour

components model the 3-dimensional posi-
tion and 3-dimensional velocity of the air-
craft. For places P3 through P6, no colour
type needs to be defined (or one can define a
dummy colour type).

I: Place P1 initially has a token with colour
z0 = (x0, v0)

′ ∈ IR6. Places P4 and P6

initially each have a token with no colour.
V : The token colour functions for places P1, P2

and P7 are defined by VP1
= V1, VP2

= V2

and VP7
= 0. For places P3 – P6 the token

colour function is not applicable.
G: Transitions T7 and T8 have a guard that is

defined by ∂GT7
= ∂GT8

= ∂G × IR3.
D: The jump rates for transitions T3, T4, T5 and

T6 are δT3
(·) = δ3, δT4

(·) = δ4, δT5
(·) = δ5

and δT6
(·) = δ6, respectively.

F : Each transition has a unique output place,
to which it fires a token with a colour (if
applicable) equal to the colour of the token
removed.

6. MODELLING POWER OF DCPN VERSUS
DSPN

This section shows that DCPN have more mod-
elling power than DSPN (Deterministic and Stoch-
astic Petri Nets), as shown in the power hierarchy
as presented by Figure 1, which is based on the
one presented in Muppala et al. (2000).

The existence of an arrow from DSPN to DCPN
can be shown as follows: GSPN (Generalised
Stochastic Petri Nets) are generalisations of Stoch-
astic Petri Nets allowing transitions to have either
zero firing times (immediate transitions) or ex-
ponentially distributed firing times (timed tran-
sitions). Immediate transitions which can be si-
multaneously enabled must have probabilities as-
signed. For timed transitions, the decision as to
which transition fires next is decided by race; the
transition with the minimal delay prior to firing
will fire next. Firing of immediate transitions has
priority over firing of timed transitions. Other
extensions include inhibitor arcs.

A DSPN is a GSPN in which the firing delays
of timed transitions may be either constant or
exponential. Through the equivalence of GSPN
and CTMC it can be easily shown that any GSPN
can be written as a DCPN: Such DCPN will
have constant exponential delay rates and con-
stant colours. The extension to DSPN can also
be covered by a DCPN: For each DSPN transi-
tion with a constant firing time, create a DCPN
transition with a guard function that evaluates
to True when the input token colour equals the
DSPN transition’s constant firing time plus the
colour of the input token at the time the transition
is pre-enabled. This input token colour has a token
colour function equal to +1, and an initial colour
equal to zero.

7. CONCLUSIONS

This paper extended the power hierarchy of de-
pendability models developed by Malhotra and
Trivedi (1994) and Muppala et al. (2000) to in-
clude Piecewise Deterministic Markov Processes



(PDP) and Dynamically Coloured Petri Nets. The
paper explained the existence of into-mappings
between PDP and DCPN, yielding that they have
similar modelling power, and has shown that
DCPN have more modelling power than Deter-
ministic and Stochastic Petri Nets.

PDPs are known as the largest class of continuous-
time Markov processes not involving diffusions.
Dynamically Coloured Petri Nets are defined to
make ample use of these PDP properties and
have shown to be very useful in developing PDP
models for complex practical problems. This use-
fulness has been explicitly used for accident risk
assessment modelling application to Air Traffic
Management (e.g. Blom et al., 2001).
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